Copied to
clipboard

?

G = C42.133D10order 320 = 26·5

133rd non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.133D10, C10.132- (1+4), C10.1122+ (1+4), C20⋊Q817C2, (C4×Q8)⋊15D5, (C4×D20)⋊41C2, (Q8×C20)⋊17C2, C4⋊C4.300D10, D10⋊Q812C2, D103Q810C2, C4.49(C4○D20), C4.D2029C2, C42D20.11C2, C20.23D49C2, C42⋊D518C2, C422D512C2, (C2×Q8).181D10, D10.13D49C2, C20.120(C4○D4), (C2×C20).171C23, (C4×C20).178C22, (C2×C10).126C24, C2.24(D48D10), (C2×D20).271C22, D10⋊C4.7C22, C4⋊Dic5.369C22, (Q8×C10).226C22, (C4×Dic5).94C22, (C2×Dic5).57C23, (C22×D5).48C23, C22.147(C23×D5), C53(C22.36C24), (C2×Dic10).34C22, C10.D4.77C22, C2.14(Q8.10D10), C10.56(C2×C4○D4), C2.65(C2×C4○D20), (C2×C4×D5).85C22, (C5×C4⋊C4).354C22, (C2×C4).171(C22×D5), SmallGroup(320,1254)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.133D10
C1C5C10C2×C10C22×D5C2×C4×D5C42⋊D5 — C42.133D10
C5C2×C10 — C42.133D10

Subgroups: 814 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×11], C22, C22 [×9], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×9], D4 [×4], Q8 [×4], C23 [×3], D5 [×3], C10 [×3], C42, C42 [×2], C42, C22⋊C4 [×12], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×7], C22×C4 [×3], C2×D4 [×3], C2×Q8, C2×Q8 [×2], Dic5 [×5], C20 [×2], C20 [×6], D10 [×9], C2×C10, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8 [×3], C22.D4 [×2], C4.4D4 [×3], C422C2 [×2], C4⋊Q8, Dic10 [×2], C4×D5 [×4], D20 [×4], C2×Dic5 [×3], C2×Dic5 [×2], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×2], C22×D5, C22×D5 [×2], C22.36C24, C4×Dic5, C10.D4 [×2], C10.D4 [×4], C4⋊Dic5, D10⋊C4 [×2], D10⋊C4 [×10], C4×C20, C4×C20 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×2], C2×D20, C2×D20 [×2], Q8×C10, C42⋊D5, C4×D20, C4.D20 [×2], C422D5 [×2], C20⋊Q8, D10.13D4 [×2], C42D20, D10⋊Q8 [×2], D103Q8, C20.23D4, Q8×C20, C42.133D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.36C24, C4○D20 [×2], C23×D5, C2×C4○D20, Q8.10D10, D48D10, C42.133D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=a2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=b2c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 80 11 70)(2 71 12 61)(3 62 13 72)(4 73 14 63)(5 64 15 74)(6 75 16 65)(7 66 17 76)(8 77 18 67)(9 68 19 78)(10 79 20 69)(21 107 31 117)(22 118 32 108)(23 109 33 119)(24 120 34 110)(25 111 35 101)(26 102 36 112)(27 113 37 103)(28 104 38 114)(29 115 39 105)(30 106 40 116)(41 83 51 93)(42 94 52 84)(43 85 53 95)(44 96 54 86)(45 87 55 97)(46 98 56 88)(47 89 57 99)(48 100 58 90)(49 91 59 81)(50 82 60 92)(121 145 131 155)(122 156 132 146)(123 147 133 157)(124 158 134 148)(125 149 135 159)(126 160 136 150)(127 151 137 141)(128 142 138 152)(129 153 139 143)(130 144 140 154)
(1 49 141 37)(2 50 142 38)(3 51 143 39)(4 52 144 40)(5 53 145 21)(6 54 146 22)(7 55 147 23)(8 56 148 24)(9 57 149 25)(10 58 150 26)(11 59 151 27)(12 60 152 28)(13 41 153 29)(14 42 154 30)(15 43 155 31)(16 44 156 32)(17 45 157 33)(18 46 158 34)(19 47 159 35)(20 48 160 36)(61 92 128 104)(62 93 129 105)(63 94 130 106)(64 95 131 107)(65 96 132 108)(66 97 133 109)(67 98 134 110)(68 99 135 111)(69 100 136 112)(70 81 137 113)(71 82 138 114)(72 83 139 115)(73 84 140 116)(74 85 121 117)(75 86 122 118)(76 87 123 119)(77 88 124 120)(78 89 125 101)(79 90 126 102)(80 91 127 103)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 107 151 85)(2 84 152 106)(3 105 153 83)(4 82 154 104)(5 103 155 81)(6 100 156 102)(7 101 157 99)(8 98 158 120)(9 119 159 97)(10 96 160 118)(11 117 141 95)(12 94 142 116)(13 115 143 93)(14 92 144 114)(15 113 145 91)(16 90 146 112)(17 111 147 89)(18 88 148 110)(19 109 149 87)(20 86 150 108)(21 137 43 80)(22 79 44 136)(23 135 45 78)(24 77 46 134)(25 133 47 76)(26 75 48 132)(27 131 49 74)(28 73 50 130)(29 129 51 72)(30 71 52 128)(31 127 53 70)(32 69 54 126)(33 125 55 68)(34 67 56 124)(35 123 57 66)(36 65 58 122)(37 121 59 64)(38 63 60 140)(39 139 41 62)(40 61 42 138)

G:=sub<Sym(160)| (1,80,11,70)(2,71,12,61)(3,62,13,72)(4,73,14,63)(5,64,15,74)(6,75,16,65)(7,66,17,76)(8,77,18,67)(9,68,19,78)(10,79,20,69)(21,107,31,117)(22,118,32,108)(23,109,33,119)(24,120,34,110)(25,111,35,101)(26,102,36,112)(27,113,37,103)(28,104,38,114)(29,115,39,105)(30,106,40,116)(41,83,51,93)(42,94,52,84)(43,85,53,95)(44,96,54,86)(45,87,55,97)(46,98,56,88)(47,89,57,99)(48,100,58,90)(49,91,59,81)(50,82,60,92)(121,145,131,155)(122,156,132,146)(123,147,133,157)(124,158,134,148)(125,149,135,159)(126,160,136,150)(127,151,137,141)(128,142,138,152)(129,153,139,143)(130,144,140,154), (1,49,141,37)(2,50,142,38)(3,51,143,39)(4,52,144,40)(5,53,145,21)(6,54,146,22)(7,55,147,23)(8,56,148,24)(9,57,149,25)(10,58,150,26)(11,59,151,27)(12,60,152,28)(13,41,153,29)(14,42,154,30)(15,43,155,31)(16,44,156,32)(17,45,157,33)(18,46,158,34)(19,47,159,35)(20,48,160,36)(61,92,128,104)(62,93,129,105)(63,94,130,106)(64,95,131,107)(65,96,132,108)(66,97,133,109)(67,98,134,110)(68,99,135,111)(69,100,136,112)(70,81,137,113)(71,82,138,114)(72,83,139,115)(73,84,140,116)(74,85,121,117)(75,86,122,118)(76,87,123,119)(77,88,124,120)(78,89,125,101)(79,90,126,102)(80,91,127,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,151,85)(2,84,152,106)(3,105,153,83)(4,82,154,104)(5,103,155,81)(6,100,156,102)(7,101,157,99)(8,98,158,120)(9,119,159,97)(10,96,160,118)(11,117,141,95)(12,94,142,116)(13,115,143,93)(14,92,144,114)(15,113,145,91)(16,90,146,112)(17,111,147,89)(18,88,148,110)(19,109,149,87)(20,86,150,108)(21,137,43,80)(22,79,44,136)(23,135,45,78)(24,77,46,134)(25,133,47,76)(26,75,48,132)(27,131,49,74)(28,73,50,130)(29,129,51,72)(30,71,52,128)(31,127,53,70)(32,69,54,126)(33,125,55,68)(34,67,56,124)(35,123,57,66)(36,65,58,122)(37,121,59,64)(38,63,60,140)(39,139,41,62)(40,61,42,138)>;

G:=Group( (1,80,11,70)(2,71,12,61)(3,62,13,72)(4,73,14,63)(5,64,15,74)(6,75,16,65)(7,66,17,76)(8,77,18,67)(9,68,19,78)(10,79,20,69)(21,107,31,117)(22,118,32,108)(23,109,33,119)(24,120,34,110)(25,111,35,101)(26,102,36,112)(27,113,37,103)(28,104,38,114)(29,115,39,105)(30,106,40,116)(41,83,51,93)(42,94,52,84)(43,85,53,95)(44,96,54,86)(45,87,55,97)(46,98,56,88)(47,89,57,99)(48,100,58,90)(49,91,59,81)(50,82,60,92)(121,145,131,155)(122,156,132,146)(123,147,133,157)(124,158,134,148)(125,149,135,159)(126,160,136,150)(127,151,137,141)(128,142,138,152)(129,153,139,143)(130,144,140,154), (1,49,141,37)(2,50,142,38)(3,51,143,39)(4,52,144,40)(5,53,145,21)(6,54,146,22)(7,55,147,23)(8,56,148,24)(9,57,149,25)(10,58,150,26)(11,59,151,27)(12,60,152,28)(13,41,153,29)(14,42,154,30)(15,43,155,31)(16,44,156,32)(17,45,157,33)(18,46,158,34)(19,47,159,35)(20,48,160,36)(61,92,128,104)(62,93,129,105)(63,94,130,106)(64,95,131,107)(65,96,132,108)(66,97,133,109)(67,98,134,110)(68,99,135,111)(69,100,136,112)(70,81,137,113)(71,82,138,114)(72,83,139,115)(73,84,140,116)(74,85,121,117)(75,86,122,118)(76,87,123,119)(77,88,124,120)(78,89,125,101)(79,90,126,102)(80,91,127,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,151,85)(2,84,152,106)(3,105,153,83)(4,82,154,104)(5,103,155,81)(6,100,156,102)(7,101,157,99)(8,98,158,120)(9,119,159,97)(10,96,160,118)(11,117,141,95)(12,94,142,116)(13,115,143,93)(14,92,144,114)(15,113,145,91)(16,90,146,112)(17,111,147,89)(18,88,148,110)(19,109,149,87)(20,86,150,108)(21,137,43,80)(22,79,44,136)(23,135,45,78)(24,77,46,134)(25,133,47,76)(26,75,48,132)(27,131,49,74)(28,73,50,130)(29,129,51,72)(30,71,52,128)(31,127,53,70)(32,69,54,126)(33,125,55,68)(34,67,56,124)(35,123,57,66)(36,65,58,122)(37,121,59,64)(38,63,60,140)(39,139,41,62)(40,61,42,138) );

G=PermutationGroup([(1,80,11,70),(2,71,12,61),(3,62,13,72),(4,73,14,63),(5,64,15,74),(6,75,16,65),(7,66,17,76),(8,77,18,67),(9,68,19,78),(10,79,20,69),(21,107,31,117),(22,118,32,108),(23,109,33,119),(24,120,34,110),(25,111,35,101),(26,102,36,112),(27,113,37,103),(28,104,38,114),(29,115,39,105),(30,106,40,116),(41,83,51,93),(42,94,52,84),(43,85,53,95),(44,96,54,86),(45,87,55,97),(46,98,56,88),(47,89,57,99),(48,100,58,90),(49,91,59,81),(50,82,60,92),(121,145,131,155),(122,156,132,146),(123,147,133,157),(124,158,134,148),(125,149,135,159),(126,160,136,150),(127,151,137,141),(128,142,138,152),(129,153,139,143),(130,144,140,154)], [(1,49,141,37),(2,50,142,38),(3,51,143,39),(4,52,144,40),(5,53,145,21),(6,54,146,22),(7,55,147,23),(8,56,148,24),(9,57,149,25),(10,58,150,26),(11,59,151,27),(12,60,152,28),(13,41,153,29),(14,42,154,30),(15,43,155,31),(16,44,156,32),(17,45,157,33),(18,46,158,34),(19,47,159,35),(20,48,160,36),(61,92,128,104),(62,93,129,105),(63,94,130,106),(64,95,131,107),(65,96,132,108),(66,97,133,109),(67,98,134,110),(68,99,135,111),(69,100,136,112),(70,81,137,113),(71,82,138,114),(72,83,139,115),(73,84,140,116),(74,85,121,117),(75,86,122,118),(76,87,123,119),(77,88,124,120),(78,89,125,101),(79,90,126,102),(80,91,127,103)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,107,151,85),(2,84,152,106),(3,105,153,83),(4,82,154,104),(5,103,155,81),(6,100,156,102),(7,101,157,99),(8,98,158,120),(9,119,159,97),(10,96,160,118),(11,117,141,95),(12,94,142,116),(13,115,143,93),(14,92,144,114),(15,113,145,91),(16,90,146,112),(17,111,147,89),(18,88,148,110),(19,109,149,87),(20,86,150,108),(21,137,43,80),(22,79,44,136),(23,135,45,78),(24,77,46,134),(25,133,47,76),(26,75,48,132),(27,131,49,74),(28,73,50,130),(29,129,51,72),(30,71,52,128),(31,127,53,70),(32,69,54,126),(33,125,55,68),(34,67,56,124),(35,123,57,66),(36,65,58,122),(37,121,59,64),(38,63,60,140),(39,139,41,62),(40,61,42,138)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0030143114
00103104
0033151127
004073138
,
900000
090000
00113200
0093000
002803932
002813372
,
40390000
010000
001993713
004409
00215532
0040172013
,
900000
32320000
00354536
00317306
0031232032
0024403810

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,30,10,33,40,0,0,14,3,15,7,0,0,31,10,11,31,0,0,14,4,27,38],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,11,9,28,28,0,0,32,30,0,13,0,0,0,0,39,37,0,0,0,0,32,2],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,19,4,2,40,0,0,9,4,15,17,0,0,37,0,5,20,0,0,13,9,32,13],[9,32,0,0,0,0,0,32,0,0,0,0,0,0,35,3,31,24,0,0,4,17,23,40,0,0,5,30,20,38,0,0,36,6,32,10] >;

62 conjugacy classes

class 1 2A2B2C2D2E2F4A···4F4G4H4I4J4K···4O5A5B10A···10F20A···20H20I···20AF
order12222224···444444···45510···1020···2020···20
size11112020202···2444420···20222···22···24···4

62 irreducible representations

dim1111111111112222224444
type+++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10C4○D202+ (1+4)2- (1+4)Q8.10D10D48D10
kernelC42.133D10C42⋊D5C4×D20C4.D20C422D5C20⋊Q8D10.13D4C42D20D10⋊Q8D103Q8C20.23D4Q8×C20C4×Q8C20C42C4⋊C4C2×Q8C4C10C10C2C2
# reps11122121211124662161144

In GAP, Magma, Sage, TeX

C_4^2._{133}D_{10}
% in TeX

G:=Group("C4^2.133D10");
// GroupNames label

G:=SmallGroup(320,1254);
// by ID

G=gap.SmallGroup(320,1254);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,100,675,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=a^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^9>;
// generators/relations

׿
×
𝔽